

Skydrol

Specifically formulated to meet the changing needs of the aviation industry

Eastman Aviation Solutions

Airlines can run a best practice hydraulic fluid operation using one or two fluids across a fleet. In some cases one fluid will provide an optimal operation for all aircraft in the fleet. In some cases aircraft might require different fluids for operational peak performance.

Before the invention of Type V fluids, there were only three fluids on the market, and all fluids were approved by all of the manufacturers.

Today the situation is much more complicated, with six phosphate ester products on the market, and some manufacturers indifferent toward the newer Type V fluids. Many airlines are using more than one fluid to meet the needs of their fleet.

The Eastman advantage

Sample analysis program

Offered at no extra cost to all Skydrol customers (including our distributor's customers).

Complimentary sample bottle kits ease the process assure clean, safely transported samples.

Helpful analysis reports that include recommendations.

Technical expertise

Our dedicated aviation hydraulic fluid experts are skilled at solving customer problems.

• Fluid development laboratory

Advancing the science of fire-resistant hydraulic fluids.

mySkydrol

A link on our website, www.skydrol.com, with customer access to their sample data and tools for analysis.

Product selection guide

Product	Features and benefits	Manufacturer approvals
Skydrol 500B-4	 Proven track record—The longest service history among phosphate ester products Erosion-resistant—Contains the same breakthrough anti-erosion additive and acid scavenger found in Skydrol LD-4 Less irritating—The only commercially available standard density aviation hydraulic fluid. Favored for its lower irritation potential, and popular for use in ground-based test rig applications 	Airbus (excluding A350 and A380) ATR Boeing (excluding B787) Bombardier (excluding Global Express) British Aerospace Cessna Embraer Fokker Gulfstream (excluding G650) Lockheed
Skydrol LD-4	Trusted—World's best selling Type IV aviation hydraulic fluid Erosion-resistant—A breakthrough product introduced in 1978, solving previous problems of valve erosion and thermal stability Excellent reliability and performance—Its overall performance under real world conditions has given LD-4 the reputation as the premier aviation hydraulic fluid, with no change in formulation for over 35 years since its inception	Airbus (excluding A350) Antonov (An-148 and 158) ATR Beriev (Be-200) Boeing (excluding B787) Bombardier British Aerospace Cessna COMAC Embraer Fokker Gulfstream Ilyushin (IL-86 and 96) Lockheed Mitsubishi Sukhoi (Superjet 100) Tupolev (Tu-204 and Tu-214)
Skydrol 5	Cost savings—Lowest density fluid available on the market, offering weight reductions, thus saving fuel Innovation—The first Type V fluid on the market Efficacy—Skydrol 5 offers higher temperature capability than Type IV fluids, the lowest density, and better paint compatibility Erosion-resistant—The first aviation hydraulic fluid demonstrating erosion-resistance at higher temperatures	Boeing (excluding B787) Bombardier (C Series only) Cessna Fokker Gulfstream (excluding G650) Lockheed
Skydrol PE-5	Longest fluid life—of any phosphate ester fluid available today, even under high moisture conditions Maximum efficiency—Excellent low temperature viscosity Cost savings—Low density offers weight reductions, thus saving fuel Erosion-resistant—Demonstrated protection at 3000 psi and 5000 psi Fluid compatibility—Fully compatible with existing Type IV and V fluids	Airbus ATR Boeing (excluding B787) Bombardier (C Series only) COMAC Gulfstream and more approvals are in progress

Physical properties

Property	Units	Skydrol PE-5	Skydrol 5	Skydrol LD-4	Skydrol 500B-4	Test method
Viscosity						
–65°F/–54°C 100°F/38°C 210°F/99°C	cSt	1076 9.53 3.31	2085 9.23 3.18	1185 11.42 3.93	2765 11.51 3.78	ASTM D445
Pour point	°F °C	<-80 <-62	<-80 <-62	<-80 <-62	<-80 <-62	ASTM D97
Specific gravity @ 25°C		0.996	0.977	1.009	1.057	Eastman 116-B
Density @ 25°C	g/cc lb/gal	0.993 8.28	0.974 8.12	1.006 8.39	1.054 8.79	Eastman 116-B
Acid number	mg KOH/g	0.03	0.03	0.03	0.03	ASTM D974
Moisture content	%w/w	0.07	0.07	0.07	0.07	ASTM D1744
Foaming						
Sequence 1 2 3	mL, sec	109, 53 54, 30 157, 59	79, 30 57, 32 81, 32	50, 25 10, 5 40, 20	100, 35 20, 15 110, 40	ASTM D892-63
Particle count			AS4059 Cla	ss 7 or better		SAE ARP598
Specific heat						
38°C 93°C 120°C 149°C	cal/g/°C	0.453 0.461 	0.402 0.437 — 0.472	0.437 0.472 — 0.507	0.418 0.453 — 0.487	ASTM D2766
Thermal conductivity						
100°F 200°F 300°F	cal/(sec*cm*°C)	0.000344 0.000289 0.000263	0.000283 0.000259 0.000246	0.000326 0.000298 0.000277	0.000315 0.000299 0.000278	ASTM D2717
Surface tension @ 25°C	dynes/cm	29.4	_	28.2	26.7	Du-Nouy Balance
Heat of combustion	BTU/lb	13,291	13,100	13,700	13,400	ASTM D240
Bulk modulus	psi	235,000	210,000	231,000	242,000	BMS3-11
Four ball wear test						
4 kg 10 kg 40 kg	mm	0.30 0.41 0.65	0.20 0.46 0.77	0.33 0.43 0.69	0.36 0.45 0.68	ASTM D4172

Fire-resistance properties

Property	Units	Skydrol PE-5	Skydrol 5	Skydrol LD-4	Skydrol 500B-4	Test method
Flash point	°F/°C	343/172	318/159	340/171	360/182	ASTM D92
Fire point	°F/°C	376/191	362/183	360/182	410/210	ASTM D92
AIT	°F/°C	812/433	870/466	880/471	945/507	ASTM D2155
Hot manifold drip		Does not burn in tray	AMS 3150C			
High-pressure spray		Will not ignite	Will not ignite	Will not ignite	Will not ignite	AMS 3150C
Low-pressure spray		No increase	No increase	No increase	No increase	AMS 3150C
Wick flammability		>40 cycles	>40 cycles	>40 cycles	>40 cycles	AMS 3150C

These data are based on samples tested in the laboratory and are not guaranteed for all samples. Contact us for complete sales specifications. Does not constitute an express warranty. See disclaimer on the back of this bulletin.

Skydrol PE-5

The first name in aviation hydraulic fluid

Type V, fire-resistant hydraulic fluid specifically formulated to meet the changing needs of the aviation industry.

• Longest fluid life

Longest fluid life at normal temperatures

- Erosion resistance Demonstrated erosion protection at 3000 and 5000 psi
- Efficiency

Ideal combination of density (specific gravity) and low-temperature viscosity

Reduced waste

Longer fluid life reduces volume for disposal as waste

• Fully compatible Normal fluid top up for conversion

Skydrol PE-5 is specifically formulated to meet and exceed the more demanding harmonized specifications as developed by Boeing, Airbus, and hydraulic fluid manufacturers. Skydrol PE-5 provides the ultimate in performance efficiency. It supplies all the advantages of the longest fluid life at design conditions. Less frequent fluid replacement provides the benefit of reducing disposal volume. Skydrol PE-5 offers performance benefits when compared with existing Type IV and Type V fluids. Benefits include:

- The longest fluid life of any phosphate ester fluid, under high- and low-moisture conditions. Also under high- and mild-temperature conditions.
- Significant weight savings vs. most Type IV fluids, which deliver fuel savings by making the hydraulic system lighter.
- The lowest –65°F viscosity among phosphate ester fluids, for faster cold starts, highest system efficiency.
- Reduced maintenance expense due to longer fluid life.
- Benefit with reduced waste disposal volumes from extended fluid life.

Longest fluid life

Skydrol PE-5 has the longest life of any phosphate ester fluid available today, even under high-moisture conditions.

*Fluid tested @ 257°F (125°C) and 0.5% H_2O , laboratory conditions

Low-temperature performance

PE-5 users may experience up to 25% better hydraulic system efficiency.

*At -65°F (-54°C) viscosity

Skydrol 5 Lighter-weight hydraulic fluid

• Fluid density

The lowest density PE hydraulic fluid, which can result in significant fuel savings

Thermal stability

Higher-temperature capability than Type IV fluids

- Erosion resistance Maintains erosion resistance at higher temperatures
- Safety
- New base stock reduces potential health concerns.
- Paint compatibility Less aggressive toward aircraft paints
- Fire resistance

Improved fire resistance over Type IV fluids in spray ignition tests

Skydrol 5 has a unique formulation built on a new base stock, triisobutyl phosphate. Most other phosphate ester products use tributyl phosphate as a major ingredient. The difference gives Skydrol 5 the lightest weight of any phosphate ester hydraulic fluid. Weight savings on the plane translate into fuel savings for the bottom line (see graphic table on the following page).

Lower density equates to weight savings

Airframe manufacturers and operators are becoming more conscious of the benefits of weight saving in today's competitive environment. Any weight that can be removed from an aircraft translates to increased payload and/or fuel savings. Skydrol 5 sets a new standard as the lowest density phosphate ester based hydraulic fluid. Typical weight savings per aircraft model are given in the graphic table. The use of Skydrol 5 can translate into 5 to 120 lb of weight savings depending on the aircraft model. This weight saving will lead directly to reduced fuel burn.

Weight and fuel savings with Skydrol 5

Skydrol LD-4 and 500B-4

Skydrol LD-4 and 500B-4 fluids are approved by all airframe manufacturers specifying phosphate ester hydraulic fluids, including:

- Airbus Industrie NSA307110
- Boeing Commercial Airplane Co. BMS3-11
- McDonnell Douglas Corp. DMS2014
- Lockheed Aircraft Corp. LAC C-34-1224
- Society of Automotive Engineer AS1241
- British Aerospace BAC M.333.B
- Fokker
- Embraer
- Bombardier BAMS 564-003

Many business aircraft manufacturers utilize one or more of these material specifications. Business aircraft manufacturers that have designed aircraft models for use with phosphate ester fluids include:

- Westwind
- Cessna
- Gulfstream

Materials used in the hydraulic system and surrounding it must be compatible with the hydraulic fluid. The fluid must not degrade their performance; neither should the materials degrade the fluid. Materials and components used in and near any aircraft hydraulic system are carefully selected by the airframe manufacturer. The aircraft industry uses many synthetic materials—many are resistant to Skydrol fluids and some are not. Many that are not totally resistant require long exposure before damage results. Deviations from the recommended materials should not be made without prior consultation with the airframe manufacturer and the materials components suppliers.

The general rating of compatibility of various materials with Skydrol fluids ratings of compatibility:

- Excellent resistance—Material may be used in constant contact with the fluid.
- Good resistance—Withstands exposure to the fluid with minimum swell (for plastics and rubber) or loss of integrity
- Poor resistance—Should not be used near the fluid
- No resistance—Disintegrates in the fluid

All approved phosphate ester hydraulic fluids are miscible and compatible and may be used with each other in any and all proportions. Miscibility and compatibility testing of the phosphate ester fluids is a qualification requirement and ensures the compatibility of all approved fluids in all proportions.

Material compatibility in Skydrol fluids

Material	Excellent	Good	Poor	No
Fabrics				
Acrylic ^a				
Cotton, wool, rayon				
Fiberglass, nylon, polyester ^b				
Carbon (graphite)				
Coated fabrics				
Buna N coated cotton or nylon				
Butyl coated nylon				
Ethylene propylene coated nylon				
Chlorosulfonated polyethylene nylon				
Neoprene coated nylon, cotton, polyester				
Silicone coated fiberglass				
Silicone coated polyester				
Vinyl coated cotton, nylon, polyester				
Vinyl coated fiberglass				
Fluoroelastomer coated nylon				
Metals				
Aluminum				
Brass				
Bronze				
Cadmium				
Chromium				
Copper ^c				
Ferrous				
Lead ^d				
Magnesium ^c				
Nickel				
Noble (gold, silver)				
Stainless steel				
Zinc ^d				
Titanium ^e				
Exotic (Hastelloy™)				
Beryllium copper				
Conversion coatings				
Anodizing (aluminum)				
Dow 7 and 17 (magnesium)				

Description of ratings

(continued)

Excellent—Suitable for use inside and outside the hydraulic system

Good—For metals, corrosion rates are higher than that of "excellent" materials but still may be useful in some applications. For plastics and elastomers, suitable for use outside the hydraulic system but not for constant immersion in liquid.

Poor—Not recommended for use, except for limited duration

No—Will dissolve in liquid Skydrol fairly quickly

Material compatibility in Skydrol fluids (continued)

Material	Excellent	Good	Poor	No
Paint finishes	1			
Alkyd ^f				
Acrylic				
Asphaltic				
Cellulosic lacquer				
Ероху				
Epoxy-amide				
Heat-resistant aluminized				
Latex				
Polyurethane				
Linseed oil				
Shellac				
Silicone				
Urethane				
Varnish				
Vinyl				
Thermoplastics				
ABS				
Acetal				
Acrylic				
Cellulosic				
ETFE copolymer ^g				
FEP (fluorocarbon)				
Nylon				
Polycarbonate ^h				
Polyetheretherketone (PEEK)				
Polyetherketone (PEK)				
Polyethylene				
Polyphenylene oxide (PPO)				
Polyphenylene sulfide (PPS)				
Polypropylene				
Polystyrene				
Polyvinyl chloride				
Polyvinylidene chloride				
Polyvinyl fluoride (PVF) ⁱ				
PCTFE				
PETG				
PTFE				
Reinforced TFE				
TFE (fluorocarbon)				

Material compatibility in Skydrol fluids (continued)

Material	Excellent	Good	Poor	No
Thermosets				
Melamine				
Polyester				
Phenolic				
Polyamide				
Polyimide				
Elastomers				
Butadiene acrylonitrile (Buna N)				
Chlorosulfonated polyethylene ^j				
Epichlorohydrin				
Ethylene propylene (EPR, EPDM)				
Fluorinated hydrocarbon ^k				
Polyacrylic				
Polybutadiene				
Polychloroprene (neoprene)				
Polyisoprene (natural and synthetic rubber)				
Polysulfide				
Polyurethane				
Isobutylene isoprene (butyl)				
Silicone				
Styrene butadiene (Buna S)				
Perfluorohydrocarbon ⁱ				
Fluoroethylene (TFE, FEP)				
Miscellaneous materials				
Cork				
Leather				
Vinyl floor tile				

Based on material from Machine Design, January 21, 1971. Copyright 1971 by Penton IPC Inc., Cleveland, Ohio

^a Includes Acrilan, Creslan, Orlon, Zefran

^b Includes Dacron, Fortrel, Kodel

^c Copper and magnesium are not recommended for use in a hydraulic system. Long-term corrosion rates are excessive.

^d Lead and zinc are not recommended for use in a hydraulic system. Their oxidation products can form soaps and cause emulsions.

^e Titanium should not be used at temperatures above 325°F. Hydrogen embrittlement may occur.

^f Includes alkyd-phenolic, alkyd-silicone, and alkyd-urethane finishes.

^g Tefzel[™] (DuPont)

^h Lexan[™] (General Electric)

ⁱTedlar™ (DuPont)

^j Hypalon™ (DuPont)

^kViton[™] (DuPont), Fluorel[™] (3M)

¹ Kalrez[™] (DuPont), Chemraz[™] (Greene Tweed)

To learn more about Skydrol, visit **www.EastmanAviationSolutions.com.**

Eastman Chemical Company Corporate Headquarters

P.O. Box 431 Kingsport, TN 37662-5280 U.S.A.

Telephone:

U.S.A. and Canada, 800-EASTMAN (800-327-8626) Other Locations, (1) 423-229-2000 Fax: (1) 423-229-1193

Solutia Inc.

A subsidiary of Eastman Chemical Company 575 Maryville Centre Drive St. Louis, MO 63141 U.S.A.

Telephone: Customer Service, 800-426-7022 Technical Service, 800-260-4150 Fax: Customer Service, 877-470-5499

LATIN AMERICA

Solutia Brasil Ltda. A subsidiary of Eastman Chemical Company Rua Alexandre Dumas, 1711—Birmann 12—7° Andar 04717-004 São Paulo, SP, Brazil

Telephone: Brazil, 0800 55 9989 Other Locations, +55 11 3579 1800 Fax: +55 11 3579 1833

EUROPE/AFRICA/MIDDLE EAST

Solutia Europe SPRL/BVBA A subsidiary of Eastman Chemical Company Corporate Village—Aramis Building Leonardo Da Vincilaan 1 1935 Zaventem, Belgium

Telephone: +32 2 746 5000 Fax: +32 2 746 5700

ASIA/PACIFIC

Eastman Chemical Company Ltd. No. 399 Sheng Xia Rd, Pudong, Shanghai 200120, People's Republic of China

Telephone: +86 21 6120 8700 Fax: +86 21 5292 9366

For the sales or technical contact nearest you, visit **www.EastmanAviationSolutions.com**.

www.eastman.com

Although the information and recommendations set forth herein are presented in good faith, Eastman Chemical Company and its subsidiaries make no representations or warranties as to the completeness or accuracy thereof. You must make your own determination of their suitability and completeness for your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. Nothing contained herein is to be construed as a recommendation to use any product, process, equipment, or formulation in conflict with any patent, and we make no representations or warranties, express or implied, that the use thereof will not infringe any patent. NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR OF ANY OTHER NATURE ARE MADE HEREUNDER WITH RESPECT TO INFORMATION OR THE PRODUCT TO WHICH INFORMATION REFERS AND NOTHING HEREIN WAIVES ANY OF THE SELLER'S CONDITIONS OF SALE.

Safety Data Sheets providing safety precautions that should be observed when handling and storing our products are available online or by request. You should obtain and review available material safety information before handling our products. If any materials mentioned are not our products, appropriate industrial hygiene and other safety precautions recommended by their manufacturers should be observed.

© 2014 Eastman Chemical Company. Eastman, Skydrol, and The results of insight are trademarks of Eastman Chemical Company or one of its subsidiaries. The [®] used herein denotes registered trademark status in the U.S.; marks referenced herein may also be registered internationally. All other trademarks are the property of their respective owners.